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Introduction
• Domain Adaptation

– Aim to transfer knowledge across domains (from source to target)
– Typically, labeled data available in the source domain
– Only few or no labeled data in the target domain

• Heterogeneous Domain Adaptation (HDA)
– Cross-domain data with distinct feature representations (e.g., BoW v.s. CNN)

Source Domain Target Domain

• Our Method: Cross-Domain Landmark Selection (CDLS)
– We propose to exploit heterogeneous source and target-domain data for learning

cross-domain landmarks.
– By learning the adaptability of cross-domain data (including the unlabeled

target-domain data), we derive a domain-invariant feature space for HDA.

Related Works
• Instance Re-weighting or Landmark Selection

– TJM [1] and LM [2] (only homogeneous DA considered)
• Supervised HDA

– Only labeled source and target-domain data available for adaptation
– HeMap [3], DAMA [4], ARC-t [5], HFA [6], MMDT [7], and SHFR [8]

• Semi-supervised HDA
– Unlabeled target-domain data can be jointly exploited during adaptation.
– HTDCC [9], SHFA [10], SSKMDA [11], SCP [12], and Ours

Notations and Motivations
• Notations
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• Motivations
– Learn a domain-invariant mapping A 2 Rm⇥d

s .
– Determine landmark weights ↵ 2 Rn

S for XS and � 2 Rn
U for XU .

– View XL as the most representative landmarks (i.e., weights = 1).
• Matching Cross-Domain Data Distributions as in JDA [13]

– Marginal distributions: P (XT ) and P (A

>
XS)

– Conditional distributions: P (XT |yT ) and P (A

>
XS |yS)

Cross-Domain Landmarks Selection (CDLS)
• Illustration

Source-Domain Data

Target-Domain Data

: Unlabeled Target-Domain Data

: Source-Domain Data
: Labeled Target-Domain Data : Unlabeled Target Domain Data

with Predicted Labels

• Supervised CDLS
– Only XS , XL available and no landmarks/weights to be learned
– Objective function:
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⇤ Cross-domain marginal data distributions:
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⇤ Cross-domain conditional data distributions:
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• Semi-supervised CDLS
– Jointly exploit XS , XL, and XU for learning cross-domain landmarks {↵,�}
– Need to assign pseudo-labels {eyi

u}
n
U

i=1 for XU .
– Objective function:
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⇤ � 2 [0, 1] controls the portion of cross-domain data in each class for adaptation.
⇤ Cross-domain marginal data distributions:
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⇤ Cross-domain conditional data distributions:
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where E

c
embed enforces the projected (cross-domain) data similarity

Pseudo-Code
Input: Labeled source and target-domain data DS = {xi

s,y
i
s}

n
S

i=1, DL = {xi
l,y

i
l}

n
L

i=1;
unlabeled target-domain data {xi

u}
n
U

i=1; feature dimension m; ratio �; parameter �

1: Derive an m-dimensional subspace via PCA from {xi
l}

n
L

i=1 and {xi
u}

n
U

i=1
2: Initialize A by Supervised CDLS and pseudo-labels {eyi

u}
n
U

i=1
3: while not converge do
4: Update transformation A

5: Update landmark weights {↵,�}
6: Update pseudo-labels {eyi

u}
n
U

i=1
7: end while

Output: Predicted labels {yi
u}

n
U

i=1 of {xi
u}

n
U

i=1

Experiment Setup
• Object Recognition: Office and Caltech-256 Datasets [14, 15]

– Images from Amazon (A), Webcam (W), DSLR (D), Caltech-256 (C)
– Feature: DeCAF6 (4096 dimensions) versus SURF (800 dimensions)
– 10 overlapping object categories
– Randomly select 3 images per category for labeled target-domain instances XL.

• Text Categorization: Multilingual Reuters Dataset [16]
– Source domain: English, French, German, and Italian

– Target domain: Spanish

– Feature: BoW + TF-IDF with 60% energy preserved via PCA
– 6 categories in 5 languages
– Randomly select 5/10/15/20 articles per category for XL.

Evaluation I - Object Recognition
• Across Feature Spaces

S,T SVMt DAMA MMDT SHFA CDLS_sup CDLS
SURF to DeCAF6

A,A 87.3±0.5 87.4±0.5 89.3±0.4 88.6±0.3 86.7±0.6 91.7±0.2
W,W 87.1±1.1 87.2±0.7 87.3±0.8 90.0±1.0 88.5±1.4 95.2±0.9
C,C 76.8±1.1 73.8±1.2 80.3±1.2 78.2±1.0 74.8±1.1 81.8±1.1

DeCAF6 to SURF
A,A 43.4±0.9 38.1±1.1 40.5±1.3 42.9±1.0 45.6±0.7 46.4±1.0
W,W 57.9±1.0 47.4±2.1 59.1±1.2 62.2±0.7 60.9±1.1 63.1±1.1
C,C 29.1±1.5 18.9±1.3 30.6±1.7 29.4±1.5 31.6±1.5 31.8±1.2

• Across Features & Datasets
S,T SVMt DAMA MMDT SHFA CDLS_sup CDLS

SURF to DeCAF6

A,D

90.9±1.1
91.5±1.2 92.1±1.0 93.4±1.1 92.0±1.2 96.1±0.7

W,D 91.2±0.9 91.5±0.8 92.4±0.9 91.0±1.1 95.1±0.8
C,D 91.0±1.3 93.1±1.2 93.8±1.0 91.9±1.3 94.9±1.5

DeCAF6 to SURF
A,D

54.4±1.0
53.2±1.5 53.5±1.3 56.1±1.0 54.3±1.3 58.4±0.8

W,D 51.6±2.2 54.0±1.3 57.6±1.1 57.8±1.0 60.5±1.0
C,D 51.9±2.1 56.7±1.0 57.3±1.1 54.8±1.0 59.4±1.2

Evaluation II - Text Categorization
• Text Categorization

– Source domain: (a) English, (b) French, (c) German, and (d) Italian

(a)� (b)� (c)� (d)�
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• Visualizing through t-SNE & Example Images/Landmarks
– for Caltech-256 ! DSLR (with SURF to DeCAF6)
– Target-domain image bounded by the red rectangle was mis-classified as monitor.
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Conclusion
• We presented Cross-Domain Landmarks Selection (CDLS) for HDA.
• Our CDLS is able to learn representative cross-domain landmarks for deriving

a proper feature subspace for adaptation and classification purposes.
• Our CDLS performs favorably against state-of-the-art HDA approaches.
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