

$Learning\,Cross-Domain\,Landmarks\,for\,Heterogeneous\,Domain\,Adaptation$

Yao-Hung Hubert Tsai¹, Yi-Ren Yeh², and Yu-Chiang Frank Wang¹ ¹Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan ; ²Dept. Mathematics, National Kaohsiung Normal University, Kaohsiung, Taiwan

Introduction

• Domain Adaptation

- Aim to transfer knowledge across domains (from source to target)
- Typically, **labeled** data available in the source domain
- Only few or no labeled data in the target domain

• Heterogeneous Domain Adaptation (HDA)

- Cross-domain data with **distinct** feature representations (e.g., **BoW** v.s. **CNN**)

Target Domain

- Our Method: Cross-Domain Landmark Selection (CDLS)
- We propose to exploit heterogeneous source and target-domain data for learning cross-domain landmarks.

- By learning the **adaptability of cross-domain data** (including the unlabeled target-domain data), we derive a **domain-invariant feature space** for HDA.

Related Works

- Instance Re-weighting or Landmark Selection
 TJM [1] and LM [2] (only homogeneous DA considered)
- Supervised HDA
- Only labeled source and target-domain data available for adaptation
- HeMap [3], DAMA [4], ARC-t [5], HFA [6], MMDT [7], and SHFR [8]
- Semi-supervised HDA

Unlabeled target-domain data can be jointly exploited during adaptation.
HTDCC [9], SHFA [10], SSKMDA [11], SCP [12], and Ours

Notations and Motivations

• Notations

Labeled Source-Domain Data $\mathcal{D}_S = \{(\mathbf{x}_s^1, y_s^1), \dots, (\mathbf{x}_s^{n_s}, y_s^{n_s})\} = \{\mathbf{X}_S, \mathbf{y}_S\}$ Labeled Target-Domain Data $\mathcal{D}_L = \{(\mathbf{x}_l^1, y_l^1), \dots, (\mathbf{x}_l^{n_l}, y_l^{n_l})\} = \{\mathbf{X}_L, \mathbf{y}_L\}$ Unlabeled Target-Domain Data $\mathcal{D}_U = \{(\mathbf{x}_u^1, y_u^1), \dots, (\mathbf{x}_u^{n_u}, y_u^{n_u})\} = \{\mathbf{X}_U, \mathbf{y}_U\}$ $\mathcal{D}_T = \mathcal{D}_L \cup \mathcal{D}_U, n_t = n_l + n_u, \text{ and } d_s \neq d_t$

- Motivations
- Learn a domain-invariant mapping $\mathbf{A} \in \mathbb{R}^{m \times d_s}$.
- Determine **landmark weights** $\alpha \in \mathbb{R}^{n_S}$ for \mathbf{X}_S and $\beta \in \mathbb{R}^{n_U}$ for \mathbf{X}_U .
- View \mathbf{X}_L as the most representative landmarks (i.e., weights = 1).
- Matching Cross-Domain Data Distributions as in JDA [13]
- Marginal distributions: $P(\mathbf{X}_T)$ and $P(\mathbf{A}^{\top}\mathbf{X}_S)$
- Conditional distributions: $P(\mathbf{X}_T | \mathbf{y}_T)$ and $P(\mathbf{A}^\top \mathbf{X}_S | \mathbf{y}_S)$

- Supervised CDLS
- Only \mathbf{X}_S , \mathbf{X}_L available and **no landmarks/weights** to be learned - Objective function:

$$\min_{\mathbf{A}} E_M(\mathbf{A}, \mathcal{D}_S, \mathcal{D}_L) + E_C(\mathbf{A}, \mathcal{D}_S, \mathcal{D}_L) + \lambda \|\mathbf{A}\|^2$$

* Cross-domain marginal data distributions:

$$E_M(\mathbf{A}, \mathcal{D}_S, \mathcal{D}_L) = \left\| \frac{1}{n_S} \sum_{i=1}^{n_S} \mathbf{A}^\top \mathbf{x}_s^i - \frac{1}{n_L} \sum_{i=1}^{n_L} \mathbf{x}_l^i \right\|^2$$

* Cross-domain conditional data distributions:

$$E_{C}(\mathbf{A}, \mathcal{D}_{S}, \mathcal{D}_{L}) = \sum_{c=1}^{C} \left\| \frac{1}{n_{S}^{c}} \sum_{i=1}^{n_{S}^{c}} \mathbf{A}^{\top} \mathbf{x}_{s}^{i,c} - \frac{1}{n_{L}^{c}} \sum_{i=1}^{n_{L}^{c}} \mathbf{x}_{l}^{i,c} \right\|^{2} + \frac{1}{n_{S}^{c} n_{L}^{c}} \sum_{i=1}^{n_{S}^{c}} \sum_{i=1}^{n_{L}^{c}} \left\| \mathbf{A}^{\top} \mathbf{x}_{s}^{i,c} - \mathbf{x}_{l}^{j,c} \right\|^{2}$$

• Semi-supervised CDLS

- Jointly exploit \mathbf{X}_S , \mathbf{X}_L , and \mathbf{X}_U for learning cross-domain landmarks $\{\boldsymbol{\alpha}, \boldsymbol{\beta}\}$
- Need to assign **pseudo-labels** $\{\widetilde{\mathbf{y}}_{u}^{i}\}_{i=1}^{n_{U}}$ for \mathbf{X}_{U} .
- Objective function:

$$\min_{\mathbf{A},\boldsymbol{\alpha},\boldsymbol{\beta}} E_M(\mathbf{A},\mathcal{D}_S,\mathcal{D}_L,\mathbf{X}_U,\boldsymbol{\alpha},\boldsymbol{\beta}) + E_C(\mathbf{A},\mathcal{D}_S,\mathcal{D}_L,\mathbf{X}_U,\boldsymbol{\alpha},\boldsymbol{\beta}) + \lambda \|\mathbf{A}\|^2$$

s.t. $\{\boldsymbol{\alpha}_i^c,\boldsymbol{\beta}_i^c\} \in [0,1] \text{ and } \frac{\boldsymbol{\alpha}^{c^{\top}}\mathbf{1}}{n_S^c} = \frac{\boldsymbol{\beta}^{c^{\top}}\mathbf{1}}{n_U^c} = \delta$

* δ ∈ [0,1] controls the portion of cross-domain data in each class for adaptation.
* Cross-domain marginal data distributions:

$$E_M(\mathbf{A}, \mathcal{D}_S, \mathcal{D}_L, \mathbf{X}_U, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \left\| \frac{1}{\delta n_S} \sum_{i=1}^{n_S} \boldsymbol{\alpha}_i \mathbf{A}^\top \mathbf{x}_s^i - \frac{1}{n_L + \delta n_U} \left(\sum_{i=1}^{n_L} \mathbf{x}_l^i + \sum_{i=1}^{n_U} \boldsymbol{\beta}_i \mathbf{x}_u^i \right) \right\|^2$$

* Cross-domain conditional data distributions:

$$E_C(\mathbf{A}, \mathcal{D}_S, \mathcal{D}_L, \mathbf{X}_U, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{c=1}^C E_{cond}^c + \frac{1}{e^c} E_{embed}^c$$

with $e^c = \delta n_S^c n_L^c + \delta n_L^c n_U^c + \delta^2 n_U^c n_S^c$

$$E_{cond}^{c} = \left\| \frac{1}{\delta n_{S}^{c}} \sum_{i=1}^{n_{S}^{c}} \alpha_{i} \mathbf{A}^{\top} \mathbf{x}_{s}^{i,c} - \frac{1}{n_{L}^{c} + \delta n_{U}^{c}} \left(\sum_{i=1}^{n_{L}^{c}} \mathbf{x}_{l}^{i,c} + \sum_{i=1}^{n_{U}^{c}} \beta_{i} \mathbf{x}_{u}^{i,c} \right) \right\|^{2}$$

$$E_{embed}^{c} = \sum_{i=1}^{n_{S}^{c}} \sum_{j=1}^{n_{L}^{c}} \left\| \alpha_{i} \mathbf{A}^{\top} \mathbf{x}_{s}^{i,c} - \mathbf{x}_{l}^{j,c} \right\|^{2} + \sum_{i=1}^{n_{L}^{c}} \sum_{j=1}^{n_{U}^{c}} \left\| \mathbf{x}_{l}^{i,c} - \beta_{j} \mathbf{x}_{u}^{j,c} \right\|^{2} + \sum_{i=1}^{n_{U}^{c}} \sum_{j=1}^{n_{S}^{c}} \left\| \beta_{i} \mathbf{x}_{u}^{i,c} - \alpha_{j} \mathbf{A}^{\top} \mathbf{x}_{s}^{j,c} \right\|^{2}$$

where E_{embed}^c enforces the **projected** (cross-domain) data similarity

Pseudo-Code

- **Input:** Labeled source and target-domain data $\mathcal{D}_S = \{\mathbf{x}_s^i, \mathbf{y}_s^i\}_{i=1}^{n_S}, \mathcal{D}_L = \{\mathbf{x}_l^i, \mathbf{y}_l^i\}_{i=1}^{n_L};$ unlabeled target-domain data $\{\mathbf{x}_u^i\}_{i=1}^{n_U};$ feature dimension m; ratio $\delta;$ parameter λ
- 1: Derive an *m*-dimensional subspace via PCA from $\{\mathbf{x}_{l}^{i}\}_{i=1}^{n_{L}}$ and $\{\mathbf{x}_{u}^{i}\}_{i=1}^{n_{U}}$
- 2: Initialize A by Supervised CDLS and pseudo-labels $\{\widetilde{\mathbf{y}}_{u}^{i}\}_{i=1}^{n_{U}}$
- 3: while not converge do
- 4: Update transformation A
- 5: Update landmark weights $\{\alpha,\beta\}$
- 6: Update **pseudo-labels** $\{\widetilde{\mathbf{y}}_{u}^{i}\}_{i=1}^{n_{U}}$
- 7: end while

Output: Predicted labels $\{\mathbf{y}_u^i\}_{i=1}^{n_U}$ of $\{\mathbf{x}_u^i\}_{i=1}^{n_U}$

Experiment Setup

- Object Recognition: Office and Caltech-256 Datasets [14, 15]
- Images from Amazon (A), Webcam (W), DSLR (D), Caltech-256 (C)
- Feature: $DeCAF_6$ (4096 dimensions) versus SURF (800 dimensions)
- -10 overlapping object categories
- Randomly select 3 images per category for labeled target-domain instances \mathbf{X}_L .
- Text Categorization: Multilingual Reuters Dataset [16]
- Source domain: English, French, German, and Italian
- Target domain: Spanish
- Feature: \mathbf{BoW} + TF-IDF with 60% energy preserved via \mathbf{PCA}
- -6 categories in 5 languages
- Randomly select 5/10/15/20 articles per category for \mathbf{X}_L .

Evaluation I - Object Recognition

• Across Feature Spaces

S,T	\mathbf{SVM}_t	DAMA	MMDT	SHFA	CDLS_sup	CDLS				
$SURF$ to $DeCAF_6$										
A,A	87.3±0.5	87.4 ± 0.5	89.3 ± 0.4	88.6±0.3	86.7±0.6	$91.7{\pm}0.2$				
W, W	87.1±1.1	$87.2 {\pm} 0.7$	$87.3 {\pm} 0.8$	90.0 ± 1.0	88.5 ± 1.4	$95.2{\pm}0.9$				
C, C	76.8 ± 1.1	73.8 ± 1.2	80.3 ± 1.2	78.2 ± 1.0	74.8±1.1	$81.8{\pm}1.1$				
$DeCAF_6$ to $SURF$										
A,A	43.4 ± 0.9	38.1 ± 1.1	40.5 ± 1.3	42.9 ± 1.0	45.6 ± 0.7	$46.4{\pm}1.0$				
W, W	57.9 ± 1.0	$47.4{\pm}2.1$	59.1 ± 1.2	62.2 ± 0.7	60.9 ± 1.1	$\boldsymbol{63.1{\pm}1.1}$				
C, C	29.1 ± 1.5	18.9 ± 1.3	30.6 ± 1.7	29.4 ± 1.5	31.6 ± 1.5	$31.8{\pm}1.2$				

• Across Features & Datasets

S,T	\mathbf{SVM}_t	DAMA	MMDT	SHFA	CDLS_sup	CDLS				
$SURF$ to $DeCAF_6$										
A,D		91.5±1.2	92.1 ± 1.0	93.4±1.1	92.0±1.2	$96.1{\pm}0.7$				
W, D	90.9 ± 1.1	91.2 ± 0.9	$91.5 {\pm} 0.8$	$92.4{\pm}0.9$	91.0 ± 1.1	$95.1{\pm}0.8$				
C, D		91.0±1.3	93.1 ± 1.2	93.8±1.0	91.9±1.3	$94.9{\pm}1.5$				
$DeCAF_6$ to $SURF$										
A, D		53.2 ± 1.5	53.5 ± 1.3	56.1 ± 1.0	54.3 ± 1.3	$58.4{\pm}0.8$				
W, D	54.4 ± 1.0	51.6 ± 2.2	$54.0{\pm}1.3$	57.6 ± 1.1	57.8 ± 1.0	$60.5{\pm}1.0$				
C, D		51.9 ± 2.1	56.7 ± 1.0	57.3±1.1	54.8 ± 1.0	$59.4{\pm}1.2$				

IEEE 2016 Conference on Computer Vision and Pattern Recognition

Conclusion

- We presented **Cross-Domain Landmarks Selection (CDLS)** for HDA.
- Our CDLS is able to learn **representative cross-domain landmarks** for **deriving a proper feature subspace** for adaptation and classification purposes.
- Our CDLS **performs favorably** against state-of-the-art HDA approaches.

References

- [14] K. Saenko, et al. Adapting visual category models to new domains. In ECCV, 2010.
- [15] G. Griffin, *el al.* Caltech-256 object category dataset. 2007.
- [16] N. Ueffing, el al. NRC's PORTAGE system for WMT 2007. In ACL workshop, 2007.